

SMOKE PROPAGATION IN TUNNELS – COMPARSION OF IN-SITU MEASUREMENTS, SIMULATIONS AND LITERATURE

D. Fruhwirt; P. J. Sturm, H. Schwingenschlögl

fruhwirt@ivt.tugraz.at http://www.ivt.tugraz.at

Daniel Fruhwirt

virtual Conference on TUNNEL SAFETY AND VENTILATION Graz, Austria December 2nd 2020

Motivation

- More information about the smoke propagation in the near fire region (backlayering)
- Validation of CFD models

Comparison to international standards and literature

virtual Conference on TUNNEL SAFETY AND VENTILATION Graz, Austria December 2nd 2020

Review – Koralmtunnel (KAT) fire tests

- Full scale fire tests in Koralmtunnel (Austria) carried out by IVT and ÖBB in 2016-2017 (see: "Hot smoke tests for smoke propagation investigations in long rail tunnels", Fire Safety Journal, Volume 105, April 2019)
- 14 pool fire tests including HRRs up to 21MW

Daniel Fruhwirt

virtual Conference on TUNNEL SAFETY AND VENTILATION Graz, Austria December 2nd 2020

virtual Conference on TUNNEL SAFETY AND VENTILATION

Graz, Austria December 2nd 2020

The information contained in this presentation remains the property of the IVT.

Daniel Fruhwirt

CFD code:

FDS 6.7

2 reference cases:		vel_avg [m/s]	no. pools [#]	HRR_avg [MW]	HRR_peak [MW]	Duration [min]
	Test 3	1.22	2	2.3	4.0	15
	Test 7	1.5	8	14.5	19.5	8

Calc. domain:

350m x 10m x 10m

Base grid:

0.25m x 0.25m x 0.25m

virtual Conference on TUNNEL SAFETY AND VENTILATION Graz, Austria December 2nd 2020

• CFD code:

FDS 6.7

2 reference cases:

	vel_avg [m/s]	no. pools [#]	HRR_avg [MW]	HRR_peak [MW]	Duration [min]
Test 3	1.22	2	2.3	4.0	15
Test 7	1.5	8	14.5	19.5	8

Calc. domain:

Base grid:

Daniel Fruhwirt

virtual Conference on TUNNEL SAFETY AND VENTILATION Graz, Austria December 2nd 2020

Boundary conditions

Daniel Frukwist	virtual Conference on	Graz, Austria	
Daniel Fruhwirt	TUNNEL SAFETY AND VENTILATION	December 2 nd 2020	

virtual Conference on TUNNEL SAFETY AND VENTILATION

Graz, Austria December 2nd 2020

The information contained in this presentation remains the property of the IVT.

Daniel Fruhwirt

Daniel Fruhwirt

virtual Conference on TUNNEL SAFETY AND VENTILATION

Graz, Austria December 2nd 2020

Combustion model: simple chemistry model

Variable	Value	Unit	
Carbon – mol fraction	0.344	mol/mol_fuel	
Oxygen –mol fraction	0.002	mol/mol_fuel	
Hydrogen – mol fraction	0.654	mol/mol_fuel	
Rate of Combustion	42.6	MJ/kg_fuel	
Radiative fraction	33	%	
CO – yield	0.01	kg/kg_fuel	
Soot - yield	0.04	kg/kg_fuel	

Daniel Employint	virtual Conference on	Graz, Austria
Daniel Fruhwirt	TUNNEL SAFETY AND VENTILATION	December 2 nd 2020

Results

test 3:

2 pools

Daniel Fruhwirt

virtual Conference on **TUNNEL SAFETY AND VENTILATION**

Graz, Austria December 2nd 2020

FDS

Results

experiment

Daniel Fruhwirt

test 7:

8 pools

virtual Conference on **TUNNEL SAFETY AND VENTILATION**

Graz, Austria December 2nd 2020

Backlayering

Approaches from literature:

• Thomas:
$$L_B = H * 0.6 * \left(\frac{2 * g * H * \dot{Q}}{\rho_0 * c_p * T_0 * U_0^3 * A} - 5\right)$$

• Li/Ingason^o:
$$L_B = H * 18.5 * ln \left(0.81 * \frac{Q^{*1/3}}{u^*} \right); \quad Q^* \le 0.15$$

 $L_B = H * 18.5 * ln \left(\frac{0.43}{u^*} \right); \quad Q^* > 0.15$

°Equations are derived for short backlayering lengths (<50m)

Daniel Fruhwirt	virtual Conference on	Graz, Austria	
Damei Frunwirt	TUNNEL SAFETY AND VENTILATION	December 2 nd 2020	

Backlayering - Results

FDS simulation: backlayering as a function of time during KAT test 3

Daniel Fruhwirt

Graz, Austria December 2nd 2020

Backlayering - Results

Test	E	zperime	ent	FI simul	DS lation	Tho	mas	Li/In	gason
no.	Peak. HRR	supply air velocity	Backlayering length	Backlayering length	% from experiment	backlayering length	% from experiment	backlayering length	% from experiment
[-]	[MW]	[m/s]	[m]	[m]	[%]	[m]	[%]	[m]	[%]
3	4.0	1.10	90	130	145	85	71	77	86
4	7.7	1.30	90	140	156	103	114	83	92
5	11.5	1.61	120	100	84	79	66	74	61
6	14.3	2.00	110	100	90	43	39	57	52
7	19.5	1.25	160	150	94	256	160	103	64
8	6.7	1.32	100	140	140	82	82	76	76
13	21.0	1.72	140	135	97	124	89	75	54

virtual Conference on TUNNEL SAFETY AND VENTILATION

Graz, Austria

December 2nd 2020

Backlayering - Results

Peak heat release rate	FDS	Li/Ingason	Thomas
< 10 MW	+	-	+/-
> 10 MW	-	-	+/-

+ oversetimation; - underestimation

=> FDS simulations led to accurate results

Daniel	Fruhwirt
--------	----------

Graz, Austria

December 2nd 2020

Conclusion

- Comparison of in-situ measurements and numerical investigations
- Accurate CFD results in temperature stratification
- Application of CFD models on the assessment of the backlayering
- Comparison of Backlayering

Daniel Fruhwirt

- FDS -> results depending on HRR: \uparrow if HRR<10MW & \downarrow if HRR>10MW
- Converge CFD -> results fit with data from experiments
- Li/Ingason approach -> good results for shorter backlayering length
- Thomas -> no clear tendency

virtual Confe	rence on
TUNNEL SAFETY AN	D VENTILATION

Graz, Austria December 2nd 2020